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It is not uncommon for economists and sociolo- 
gists to use data bases where the probability 
that a random individual will be in the sample 
depends upon his income, occupation, or education. 
Often these data bases are used to estimate 
models predicting these same success indicators. 
The application of ordinary least squares (OLS) 
to such data, however, yields inconsistent esti- 
mators of models predicting income, occupation, 
or education. 

The biased nature of OLS estimators when the 
sample selection is based on the dependent vari- 
able, often called truncation bias in the litera- 
ture, has been pointed out frequently (Bishop 
1974; Cain 1975; Crawford 1975; Hausman and Wise 
1977; Manski and Lerman 1976; Taubman and Wales 
1974, ch. 4, app. F, L). Sometimes the sampling 
process results in an absolute truncation (i.e., 

absolutely no one with initial year incomes above 
1.5 times the poverty line, as in the Rural 
Income Maintenance Experiment). Estimation tech- 
niques for this situation have been developed by 
Crawford (1975) and Hausman and Wise (1977). 

This paper tackles the situation where all 
observations in the population have some probabi- 
lity of being in the sample and the probability 
is a linear function of the dependent variable. 
I calculate and apply formulae that relate the 
bias to the strength of success selectivity and 
the R` of the true relationship. 

Data bases where sampling ratio depends upon 
income are of two types: follow -up surveys with 
substantial nonresponse rates, and interview sur- 
veys that oversample people in low or high income 
neighborhoods. Follow -up surveys may fail to 
obtain information from many of the people in its 
defined sample for a variety of reasons: death, 
inability to find a current address, or refusal 
by the respondent to fill out the questionnaire. 
Refusals are the primary cause of success bias. 

One heavily used data set with substantial 
refusal problem is Project Talent. The combined 
1 and 5 year follow -ups of the male 11th graders 
had a response rate of 52% to the series of mail 
questionnaires. A special intensive follow -up 
of a 5% sample of mail questionnaire nonrespon- 
dents which obtained a 90% response rate allows 
us to establish the extent to which success 
affects the probability of responding to a mail 
questionnaire. Stratifying by the social status 
of each student's parents, college attenders were 
1.5 to 1.6 times as likely to respond to at least 
one of the two follow -ups (Bishop 1974). Given 
college attendance status, the student's family 
background had no systematic impact on his res- 
ponse rate. 

Another very important data set that potenti- 
ally has a success bias is the National Bureau of 
Economic Research (NBER)- Thorndike sample. 
Thorndike took a random sample of 17,000 from a 
population of Army Air Corps volunteers for pilot, 
navigator, and bombardier training programs who 
passed a preliminary screening test. By 1955, 
1500 had died and of the living, 2000 military 
and 9700 civilians responded to a mail question- 
naire. The response rate was therefore about 75 %. 
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This is a high response rate and is attributed by 
Taubman and Wales (1974) to the accurate current 
addresses generally available from the Veterans 
Administration and the use of Retail Credit 
Bureau to find some of the nonrespondents. 

The 1969 data is a survey of the 1955 respon- 
dents. Of those for whom current addresses were 
obtained and who had not died, 70% responded. 
Taubman and Wales found that while the 1955 
income. of 1969 nonrespondents was lower than for 
the respondents, it was not lower when ability 
and schooling were controlled. From this they 
argued that any selection process that existed 
was based on the independent and not the depen- 
dent variables. It has been shown that when the 
true model has homogeneous coefficients, differ- 
ential sampling ratios that depend on included 
right hand side variables do not bias the esti- 
mates of structural parameters (Porter 1973; 
Taubman and Wales 1974). 

However, their test applies only to the 
response rate conditional upon having responded 
in 1955. There may still be success bias in the 
1955 response rate. Their test also depends upon 
the assumption that success persists over time 
and that income is as good a measure of success 
at age 29 as at age 44. If the conditional pro- 
bability of responding in 1969, given that one 
responded in 1955, is a function of the change in 
one's relative income over the period, the test 
used by Taubman and Wales will miss the success 
bias. An alternative way to test for success 
bias in the 1969 data would be to compare those 
who responded as soon as they received a ques- 
tionnaire to those who required reminders. But 

even this requires some strong assumptions. 
Because of the lack of an intensive follow -up by 
retail credit or phone, we can never be sure 
there is no success bias in the NBER- Thorndike 
data. However, it may be possible to put limits 
on the effects a success bias could have. 

Another type of data set in which this problem 
arises is when black neighborhoods have been 
oversampled, as in the 1966 -67 Survey of Economic 
Opportunity (SEO); when low income neighborhoods 
have been oversampled, as in the Census Employ- 
ment Surveys; or when low family incomes relative 
to the poverty line are oversampled, as in the 
Michigan Panel Study of Income Dynamics. These 
data sets have been used to estimate models pre- 
dicting success variables like hours worked, 
weeks worked, and earnings. A widely publicized 
finding using these surveys has been that rates 

of return to schooling are lower in low income 
neighborhoods than for samples of people drawn 
from the metropolitan area as a whole or the 
nation (Harrison 1972). Since living in a pover- 

ty neighborhood is a consequence of earnings, 
restricting one's sample to these neighborhoods 

or oversampling in them results in a simultaneous 
equations bias when estimating the structural 
parameters of models that predict earnings and 
other success variables. 

In the next section of this paper, I calculate 
the bias to be expected in OLS estimates of 
structural models of earnings, work effort, or 



status attainment when the probability of being 
in the sample is a linear function of the depen- 
dent variable. If we adopt the conventional 
assumption that the true relationship has a 
homoskedastic error structure, we find that the 
ratio of the true to the estimated coefficient is 
a simple positive function of the R of the true 
relationship and a negative function of the 
absolute size of the proportionate change in 
sampling probability for a standard deviation 
change in the dependent variable. When the right 
hand side variables are symmetric (the third 
moment = 0), the bias is independent of whether 
the sampling proportion is a positive or negative 
function of the dependent variable. To demon- 
strate the importance and relevance of these 
findings, the final section of this paper com- 
pares the schooling coefficients estimated in 
different subsamples of the SEO in models pre- 
dicting yearly earnings. 

1. Statistical Model 

Porter (1973) and others have shown that if 
sampling ratios are independent of the distur- 
bances of the model to be estimated and the 
coefficients of that model are homogeneous over 
the population, OLS estimators of structural 
parameters are unbiased. In other words, samp- 
ling ratios that are functions of included inde- 
pendent variables (correlated with y only be- 
cause of the joint dependence of x and y) do not 
produce a selection bias in OLS estimators. The 
problem dealt with in this paper is sampling 
ratios that are linear functions of the dependent 
variable. Sampling proportions correlate with 
independent variables solely as a result of their 
joint association with y. 

Analytical solutions are not difficult to 
obtain for models with only one independent 
variable. Let the true model be 

1) + 

2) pi (1 + yy + vi) ns /n. 

Then 
El piyi E1 (1 

+ + vi)yi 
3) Es 

(y) = n n 
E1 pi E1 (1 + yyi + vi) 

YV(y) 

where i indexes each observation in the popula- 
tion (i = 1 . . . n) 

yi and x are defined as deviations from 
their population mean 

is homoskedastic and independent of xi and 
vi 

p probability the "i "th observation will 
i be selected 
/n = the average sampling ratio = the num- 

ber of observations selected for the 
the sample (n 

e) 

divided by the total 
number in the population (n) 

vi is independent of xi and consequently 
independent of y 

the increased probability of being sampled 
per unit of y divided by the average 
sampling proportion 

E is the expectation operator 
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s subscript indicates the mean, variance, or 
covariance indicated is for the nonrandom 
sample. 

We note that all summations are over the entire 
population, i 1 . n, and drop the limits 
from our notation. The sample mean of x is 

E pixi E(1 + yyi + vi)xi 

4) Es(x) = E pi E(1 + vi) 

= yCov(xy) yßV(x). 

Noting that Ex Ey = 0, the sample variances) 
and covariances have the following expectations: 

E[1 + yyi + vi][xi - YßV(x)]2 
E(Vs(x)) = E(1 + + vi) 

= E[xi Ey[x - yßV(x)]2 

= V(x) 

n 
- 2 y2ßV(x)Cov(xy) 

3 

5) E(Vs(x)) = V(x) + nVßx) 

E(Covs(xy)) n E[xi - YßV(x)][yi - yV(y)] 

+ Ey[xi YßV(x)][yi - yV(y)] 

Cov(xy) + Y2ßV(x)V(y) 

y2 nExiyi 

- Y2V(y)Cov(xy) 

Y2ßV(y)V(x) 

6) E(Covs(xy)) Cov(xy)L1 + nßCov(xy) 

2 ] 
-YV(y) 

The probability limit of the sample estimate of 
is 

Cov(xy)[1 - y2V(y) + yß2Ex3 /nCov(x 
7) 

V(x)[1 - y2ßV(x) + /nV(x)] 

bs 1 + D - y2V(y) 

1 + D - y 
2 
V(y)R 

2 

where D y$Ex3 /nV(x) times the ratio of the 
third and second moments of x 

R2 the propostion of the variance ex- 
by the true relationship. 

Since R < 1, b /ß is necessarily less than or 
equal to 1. Selection on the dependent variable 
attenuates the parameter estimates. The amount 
of attenuation depends upon three factors: the 
direction and degree of skewness of x(D), the 
strength of the relationship between y and the 
probability of selection (y), and the R2 of the 
underlying relationship. 

The D term in (8) depends upon the interaction 
of the sample selection process with the skewness 
of x. Since skewness is defined as a Ex3 /na3 

the third moment of a variable over3the cube 
of its standard deviation, we may rewrite 



D a3 yßox = a3 yayrxy. The expression, 

yayrxy times 100, can be interpreted as the per- 

centage change in the probability of an observa- 
tion's selection into the sample that is associ- 
ated with a standard deviation change in x. It 

is positive when y and r have the same sign, 
as in earnings functionséstimated on Project 
Talent or NBER- Thorndike data sets. Thus, if 

the distribution of x in the population has pos- 
itive skew, D is positive, which reduces bias. 
In SEO and Census Employment Survey data sets 
where families in black or low income neighbor- 
hoods are oversanpled, ya r is negative because 
here y and r have opposIté signs. In these 
surveys a polltive skew to x causes D to be nega- 
tive, thus increasing the bias. 

The distribution of years of schooling --the x 
variable upon which we are focussing in this 
paper --can be skewed in either direction, depen- 
ding on the year and population studied. People 
educated in the early twentieth century have 
positively skewed educational attainment distri- 
butions. The most recent cohorts have negatively 
skewed distributions. Men between the ages of 30 
and 35 in 1974 have an a = -.53. Distributions 
for adults of all ages are very close to being 
symmetric. When compared to the skewness of a 
zero -one variable with a mean of .1, whose a 

3 
2.67, skewness for all adults is quite small: 
.04 fcr white males and -.14 for black males in 
the 1967 CPS. Since the term measuring the 
impact of a standard deviation change in x on 
the probability of selection, ya r , must have 
an absolute value of substantialYyxYess than one, 
schoolings skewness does not have an important 
effect upon the magnitude of the selection bias 
in first order statistics of relationships be- 
tween schooling and income. From this point on 
we will, therefore, neglect the impact of skew- 
ness and assume that all independent variables 
are symmetric (a3 = 0). When all variables are 
assumed symmetric, it is possible to derive a 
simple formula for the selection bias in the 
coefficients of regressions with two independent 
variables. (The mathematical derivation is 
carried out in the Appendix.) The formula that 
results is the same as the formula for 
order regression coefficients when x is sym- 
metric: 

9) 1 - y2V(y) 

1 - y 
2 
V(y)R 

2 

where R2 is the coefficient of determination in 
the multi or bivvriate regression in the full 
population.2 The sign of y indicates whether 
the sampling ratio is positively or negatively 
associated with the dependent variable. It is 

squared in the final terms of both the numerator 
and denominator. Consequently, the size of the 
bias is not affected by whether more income 
raises or lowers the probability of selection. 
The probability limit of the ratio of estimated 
to true parameters when the independent variables 
are symmetric is presented in Table 1 for alter- 
native y's and R2's. 

If the R2 1.0, there is no bias, for select- 
ing the sample on the dependent variable is 
equivalent to selecting on the independent vari- 
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ables. As the R2 declines, the bias increases in 
size for a lye 1 of .4, an R2 of .6 implies a bias 
ratio of .929.y An R2 of .3 implies a, bias ratio 
of .882 or a 12% attenuation of regression coeffi- 
cients. An R2 of .1 implies a bias ratio of .853 
or a 15% attenuation of the coefficients. In the 
limit as R2 approaches zero, the bias 5atio 
approaches its maximum of b /ß 1 - y V(y). 

Thus, when the bias in first order coefficients 
is compared across alternative right hand side 
variables, the proportionate attenuation is larger 
in variables that have a weak relationship with y. 
Since in a trivariate relationship bias depends 
upon the multiple correlation coefficient, the 
coefficients of both independent variables atten- 
uate by an identical proportionate amount. 

The expression, ya , is the change in the pro - 
bability of inclusionyin the sample associated 
with a standard deviation change in y divided by 
the average probability of inclusion. The smaller 

IyavI the smaller the bias. Since y must approach 
zero as the proportion of a population that is 
sampled approaches one, selection bias must 

decline as a survey'¢ response rate approaches 
100 %. For a given R`, the attenuation of regres- 
sion coefficients rises roughly in proportion to 

the square of yay. At an R4 of .30, a yuy of .2 

causes a 3% attenuation, a yay of .4 causes an 

attenuation of 12 %, an a yoy of .707 yields an 
attenuation of 41 %. 

Biases of even larger magnitudes are possible 
if selection probabilities have a nonlinear rela- 

tion (ln P = for instance) with the depen- 
dent variable. As long as the sampling ratio is 
defined as a linear function of y, it is not pos- 
sible for our model to handle truly powerful 
selection biases. The derivations would be inter- 
nally inconsistent if predicted sampling ratios 
fell outside the zero -one interval. They will not 
fall outside this interval if y is sufficiently 
small and the y distribution sufficiently compact. 

A rectangular distribution for y would require a 
< .81, if /n < .5, and a 

< 2(.81)(1 -n )/n for n /n > .5. All other single 
modal distributions ofsy will require that y be 

smaller than these limits. 

2. Application to Earnings Functions in the 
Survey of Economic Opportunity 

Our statistical model predicts that when the 
sampling ratio is dependent of income, the school- 

ing coefficients in an earnings function will be 
lower than the true population coefficient. Table 

2 tabulates estimated relative sampling ratios by 

earnings for alternative subsamples of the SEO. 

Not surprisingly, the probability of living in a 

low income neighborhood is negatively associated 
with the level of one's earnings. For whites, the 

probability of living in a predominantly black 

area is also negatively associated with earnings. 
For blacks, however, there was no visible rela- 

tionship. Therefore, we do not expect blacks in 
the special sample of predominantly black neigh- 

borhoods to have lower schooling coefficients than 
a national sample of blacks. We do expect, 
however, that whites living in these neighborhoods 
will have a smaller schooling coefficient than a 
national sample of whites. Also, rates of return 

to schooling estimated for both blacks and whites 



living in low income neighborhoods in urban areas 

are expected to be smaller than the rates of 

of return for all urban residents. An examina- 
tion of Table 3 indicates, as expected, that 
schooling coefficients of whites in predominantly 
black and low income areas are substantially 
smaller than those in the national sample. For 

whites the unbiased coefficient of .0879 falls to 

.0701 in black areas and to .0643 when the sample 
is limited to low income neighborhoods. The 
schooling coefficients for blacks are smaller 
only for the low income areas. Furthermore, the 
drop in the schooling coefficients is larger for 
models with low R (those without measures of 
'work effort on the right hand side). 

For blacks in low income areas the linear 
specification of the sampling mechanism predicts 
the coefficient changes well. For whites, the 
impact of income on the sampling ratio is so 
powerful that the estimates of y produced are too 
high. Some high earnings individuals will have 
negative predicted sampling ratios, in which case 
the analysis becomes internally inconsistent. If 

predicted coefficients are calculated, neverthe- 
less, we overpredict the reduction in the school- 
ing coefficients. 

The problem is that for whites the sampling 
ratio- earnings relationship for predominantly 
black or low income neighborhoods is nonlinear. 
It looks like a logistic specification would 
serve better than a linear specification. Simple 
analytic results are not obtainable, however, 
when the sampling ratio is a nonlinear function 
of the dependent variable. 

Where does that leave the researcher? If data 
availability forces one to use a data set in 
which sampling ratios are nonlinear functions of 
the dependent variable, how can consistent esti- 
mators be obtained? The solution that suggests 
itself is a two stage process. First, estimate 
a model of the sampling process. If sampling 
ratios depend directly on some of the indepen- 
dent variables as well as the dependent variable, 
these variables should be included in the model 
along with y. The main requirement of this model 
is that the error in predicting the sampling 
ratio be independent of the disturbances of the 
structural model. In Census Employment Surveys 
this could be done by comparing the low income 
area's population to that of the SMSA as a whole. 
In follow -up surveys a data set with an intensive 
follow -up of a sample of nonrespondents is 
required. 

The second step is to estimate the structural 
model, using the inverse of these predicted samp- 
ling ratios as weights. Manski and Lerman (1976) 

have shown that when probabilities of inclusion 
in the sample are a function of a categorical 
dependent variable, weighting each observation 
by the inverse of its sampling ratio yields 
unbiased and efficient estimators of the coeffi- 
cients of a logistic model. Where sampling 
ratios are known (as for follow -up surveys with 
intensive follow -ups of a small sample) weighted 
least squares using these ratios from the 
sampling frame is another alternative. It is 

safe from misspecification of the sampling model 
but it becomes highly sensitive to the observa- 
tions in the nonrespondent sample, since just a 
few observations carry a major share of the 
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variance to be explained. Both approaches reduce 
bias only at the cost of increasing heteroskedas- 

ticity. The advantage of using predicted sampling 
ratios rather than sampling frame ratios is that 

the heteroskedasticity created by weighting will 
be less serious. Heteroskedasticity, however, 

does not bias coefficients, it only lowers the 

precision with which they are estimated. 
This paper presents a suggested route for 

exploration. I leave the rigorous development of 

the properties of such estimators to a later time, 

and to others. 

NOTES 

1Homuoskedasticity and the independence of x 

and u makes it possible to simplify Ey2x and 

Eyx2: 

Ey2x Ex(ßx + u)2 E ß2x3 + 2ßx2u + Exu2 

- ß2Ex3 

Eyx2 - Ex2(Bx + u) ß£x3 + Ex2u ßEx3. 

2In recent, as yet unpublished work, Arthur 

Goldberger (1975) has proved a result that is in 

many ways more general. When the right hand aide 

variables are multi - normally distributed, trunca- 

tion or selection bias results in a proportionate 

shrinkage of all regression slopes by 

- (1 - 02)R2, where 02 is the ratio of the 

restricted sample variance of y to the population 

variance of y. Note that (1 - e2) corresponds to 

in our notation. Thus, for the special 

case of bivariate and trivariate regressions when 

there is a linear relation between y and the 

probability of selection, this paper generalizes 
Goldberger's result to symmetric right hand side 

variables. 
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Table 1 

Values of b 
s 
/8 as a Function of R2 of the True 

Relationship and the Strength of Selection on y 

R2 1.0 .8 .6 .5 .4 .3 .2 .10 0 

.707 1 .833 .714 .667 .625 .588 .555 .526 .5 

IYayI-.5 1 .938 .882 .853 .833 .811 .789 .769 .75 

.4 1 .965 .929 .913 .897 .882 .868 .853 .84 

.2 1 .992 .984 .979 .975 .971 .967 .964 .96 

Note: All independent variables are symmetric. 

is the proportionate increase in the sampling probability per standard 
y deviation of the dependent variable. 

Table 2 

Estimated Sampling Ratio Conditional Upon Income Relative 
to the Average Sampling Ratio 

Earnings -2 2 -3 3-4 4 -5 5 -6 6 -7 7 -8 8 -10 

Whites in pre- 
dominantly 
black areas 

Blacks in pre- 
dominantly 
black areas 

2.24 2.24 2.47 1.53 1.41 .83 .90 

1.00 .91 1.02 .97 .83 1.09 .91 

Whites in low 2.31 2.45 3.00 2.17 1.37 .87 .70 

income areas 

Blacks in 1.07 1.08 1.27 1.12 1.12 .88 .63 
income areas 

.64 

.88 

.56 

.52 

10 -14 14 -20 

.48 

* * 

.21 * 

* * 

* 
means n of the Current Population Survey base is below 10. 

1Since low income areas were defined only for Standard Metropolitan 
Statistical Areas the comparison base is all blacks living in SMSA's. 
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Table 3 

Schooling Coefficients in Different Samples 

Low 
Income 

Area 
Coef. 

Predom. 
Black 

Area 
Coef. 

CPS 

Coef. R Predom. 
Black 

Low 
Income 

Yearly Earnings 

Whites 

0-20 yrs schooling .0643 .0701 .0879 .23 -.95 -1.06 

0-15 yrs schooling .0500 .0656 .0889 .17 -1.00 -1.11 

Blacks 
-20 yrs schooling .0525 .0628 .0610 .08 .45 -.20 
0 -15 yrs schooling .0447 .0530 .0621 .07 .45 -.20 

Hourly Earnings, -20 yr$ 
Schooling 

Whites .0588 .0556 .0743 .40 -.95 -1.06 
Blacks .0410 .0504 .0462 .54 .45 -.20 

Note: The dependent variable is the log of yearly earnings. Samples were 
limited to nonfarm males not in school with at least six years of 
experience. The schooling coefficients are from regressions with 
experience, experience squared, SMSA residence, and SMSA size as 
controls. The hourly earnings coefficients have additional controls: 
log of weeks worked last year, part time last year, and last week. 
The Black CPS sample was limited to SMSA residents. 

* 
Estimates of y were obtained from unweighted regressions of the ratio 

of the observed conditional sampling ratio to the average sampling ratio 

on the log of yearly earnings. The CPS provides the estimate of the 
population distribution of earnings. Weighted regressions yield more 
negative estimates of y. 
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